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Abstract— We extend the maximum causal entropy frame-
work for inverse reinforcement learning to the infinite time
horizon discounted reward setting. To do so, we maximize
discounted future contributions to causal entropy subject to
a discounted feature expectation matching constraint. A pa-
rameterized class of stochastic policies that solve this problem
are referred to as soft Bellman policies because they can be
specified in terms of values that satisfy an equation identical
to the Bellman equation but with a softmax (the log of a sum
of exponentials) instead of a max. Under some assumptions,
algorithms that repeatedly solve for a soft Bellman policy,
evaluate the policy, and then perform a gradient update on the
parameters will find the optimal soft Bellman policy. For the
first step, we extend techniques from dynamic programming
and reinforcement learning so that they derive soft Bellman
policies. For the second step, we can use policy evaluation
techniques from dynamic programming or perform Monte
Carlo simulations. We compare three algorithms of this type by
applying them to a problem instance involving demonstration
data from a simple controlled queuing network model inspired
by problems in air traffic management.

I. INTRODUCTION

Inverse reinforcement learning (IRL) attempts to use

demonstrations of “expert” decision making in a Markov

decision process (MDP) to infer a reward function and

corresponding policy that are in some sense consistent with

the expert demonstrations [1]. Several IRL approaches suffer

from at least one of some common weaknesses [2]. One

such weakness is the imposition of assumptions about expert

behavior in order to arrive at a well-posed problem. A second

is that when the demonstration data is sub-optimal, it may be

assigned probability zero by the inferred stochastic policy. A

third is that, for certain assumed stochastic policy distribu-

tions, the most likely policy is not the one that achieves the

largest objective value. A fourth is requiring the solution

of a non-convex optimization problem. An approach that

is free from these weaknesses is maximum causal entropy

(MCE) IRL, proposed by Ziebart et al. [2]–[4]. Given the ill-

posed nature of the problem, MCE IRL proposes to infer the

most uncertain stochastic policy that satisfies some statistic-

matching constraints that capture the “structured, purposeful

qualities” in the demonstration data [2]. Furthermore, the

MCE IRL approach can be interpreted as maximizing the

causal likelihood of the demonstration data when a certain

stochastic policy distribution is assumed, and it provides a

worst-case prediction log-loss guarantee [2]. However, as
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far as we know, MCE IRL has not been explored in the

popular infinite discounted reward setting. MDPs with an

infinite discounted reward objective have been utilized to

model a range of problems in which there is no terminal

state, including problems from finance and manufacturing

[5]. Discounting future rewards captures a preference for

present rewards over future rewards, which arises naturally

in many contexts, such as when one is concerned with the net

present value of cash flows. For IRL there is an additional

motivation for using a discounted objective: expert decision

makers may be guided by such an objective because they

find it easier to determine the impact of present actions on

present rewards than on future rewards. A final limitation of

many previous IRL algorithms, including the algorithms for

MCE IRL proposed by Ziebart et al., is that they require

knowledge of the state transition probabilities.

In this paper, we extend MCE IRL to the popular infi-

nite time horizon discounted reward setting by maximizing

discounted future contributions to causal entropy subject to

a discounted feature expectation matching constraint. This

leads to the maximum discounted causal entropy (MDCE)

IRL problem. Like MCE IRL, MDCE IRL is free from

the four weaknesses that plague several other approaches to

IRL, and it provides a worst-case prediction discounted log-

loss guarantee. By extending an existing algorithm for the

finite time MCE IRL problem and techniques from dynamic

programming and reinforcement learning, we specify three

algorithms. One is an online algorithm that, unlike most IRL

algorithms, does not require state transition probabilities. We

demonstrate the behavior of these algorithms on an MDCE

IRL problem instance based on a simple queuing network

model inspired by problems in air traffic management.

The remainder of this paper is structured as follows. We

establish some preliminary definitions and assumptions in

Section II. Then, we specify and describe the MDCE IRL

problem in Section III. In Section IV, we derive parameter-

ized soft Bellman policies that solve the MDCE IRL prob-

lem. We describe and prove characteristics of algorithms for

the problem in Section V. Section VI contains a description

and results of a computational experiment we performed to

study and compare some algorithms for this problem. In

Section VII, we finish the paper with conclusions.

II. PRELIMINARY DEFINITIONS AND ASSUMPTIONS

A. Markov Decision Processes

A Markov decision process (MDP) is specified by a six-

tuple: (S,A, P0, P, γ, R). The finite set of states is S and

the finite set of actions available at each state is A. The



distribution of the initial state s0 is specified by P0. The state

transition probabilities are captured by P : P (st+1|st, at) is

the probability of transitioning to state st+1 when in state st
and selecting action at. The reward function R : S×A → R

specifies that R(s, a) is the reward achieved for selecting

action a when in state s. A policy π specifies how to select

actions in an MDP. Stationary policies do not depend on the

time step. A stationary stochastic policy π : S → ∆(A)
specifies a conditional distribution over actions. Sequences

of states and actions in an MDP can also be interpreted

as two interacting random processes: S0:tf
, {St}

tf

t=0 and

A0:tf
, {At}

tf

t=0. At each t, the random variable St takes a

value st ∈ S and the the random variable At takes a value

at ∈ A. The distributions of the random variables making up

these random processes (and their interactions) are described

by the distribution P0 and the conditional distributions P and

π. The discount factor γ ∈ (0, 1) helps define the expected

infinite discounted reward objective E [
∑∞

t=0
γtR(St, At)] .

In IRL problems, R is not given but rather inferred from

demonstration data. An MDP but with unknown reward

function is an MDP\R [6].

B. Demonstration Data

The specification of an IRL problem includes demonstra-

tions of expert decision making that can be used to infer

a reward function and corresponding policy. We are given a

data set D =
{

(sd,t, ad,t)
tf

t=0

}D

d=1
, where ad,t was generated

by πE(sd,t), the expert’s policy evaluated at sd,t.

C. Feature Expectation Matching

One way to quantify the “structured, purposeful quali-

ties” of expert actions is to study the expected value of

a reward feature vector f : S × A → RK [2]. For

a given MDP, a feature expectation vector (FEV) f̄γ
π ∈

RK for a policy π and a discount factor γ is defined

as f̄γ
π , EP0,P,π [

∑∞
t=0

γtf(St, At)] . We can use the

demonstration data D to compute an estimate ˆ̄fγ

πE of f̄γ

πE :
ˆ̄fγ

πE = 1

D

∑D
d=1

∑tf

t=0
γtf(sd,t, ad,t). Assuming that the

reward feature vector components measure quantities that

direct expert decisions, we can find a π that shares the

“purposeful qualities” of πE captured in the demonstration

data by enforcing the feature expectation matching (FEM)

constraint: f̄γ
π = ˆ̄fγ

πE [2].

D. Maximizing Entropy

One way to select from among probability distributions

that satisfy some constraints is to pick the one that maximizes

entropy. This distribution assigns probability to outcomes

as evenly as possible, making it the “least committed” or

“most uncertain” option [2]. When given side information

and selecting from among conditional probability distri-

butions that satisfy constraints, the corresponding objec-

tive is to find the distribution that maximizes conditional

entropy. In the finite time horizon IRL context, the side

information is a sequence of visited states s0:tf
, {st}

tf

t=0,

and the distribution to be inferred is a stochastic pol-

icy π(at|s0:t, a0:t−1) = Prob(at|s0:t, a0:t−1), which can

be simplified to π(at|st) = Prob(at|st) for an MDP.

The conditional entropy is defined as H(A0:tf
|S0:tf

) =
E [− logProb(A0:tf

|S0:tf
)] , where Prob(a0:tf

|s0:tf
) is the

conditional probability. The conditional probability con-

ditions on the entire set of side information (s0:tf
):

Prob(a0:tf
|s0:tf

) =
∏tf

t=0
Prob(at|s0:tf

, a0:t−1). This is

problematic because it leads to non-causal policies. There-

fore, it is more appropriate to find a conditional dis-

tribution (stochastic policy) that maximizes causal en-

tropy H(A0:tf
||S0:tf

) = E [− logProb(A0:tf
||S0:tf

)] , where

Prob(a0:tf
||s0:tf

) is the causally-conditioned probability

Prob(a0:tf
||s0:tf

) =
∏tf

t=0
Prob(at|s0:t, a0:t−1) [7].

E. Discounted Causal Entropy

An issue with extending the notion of causal entropy

to an infinite time horizon context is that causal entropy

can be infinite. A related but finite quantity is discounted

contributions to future causal entropy, or just discounted

causal entropy, for some discount factor β ∈ (0, 1), which

is defined as:

Hβ(A0:∞||S0:∞) , E
P0,P,π

[

∞
∑

t=0

−βt log πt(At|S0:t, A0:t−1)

]

.

Discounted entropy has been employed in other contexts

(e.g., control that is robust to model mis-specification [8]).

III. MAXIMUM DISCOUNTED CAUSAL ENTROPY

INVERSE REINFORCEMENT LEARNING PROBLEM

The maximum discounted causal entropy (MDCE) IRL

problem is

maximize
π

Hβ(A0:∞||S0:∞) (1)

subject to f̄γ
π = ˆ̄fγ

πE (2)

πt(at|st) ≥ 0 ∀at, st, t ≥ 0 (3)
∑

at∈A

πt(at|st) = 1 ∀st, t ≥ 0. (4)

The decision variables that make up the potentially non-

stationary policy π are πt(at|st) ∀st ∈ S, at ∈ A, t ≥ 0.

The objective (1) is to maximize discounted causal entropy.

Constraint (2) is the FEM constraint. Constraints (3) and

(4) require that π be a valid stochastic policy. No constraint

explicitly specifies that π be causally-conditioned (not de-

pendent on future states). However, a causally-conditioned

policy must factor as π(a0:∞||s0:∞) =
∏∞

t=0
πt(at|st), so

by using the factors πt(at|st) as the decision variables, we

force π to be causally-conditioned (see [2], Remark 5.7).

While the MDCE IRL problem as specified in (1)–(4)

is non-convex, a mathematically-equivalent specification in

which decision variables specify Prob(a0:∞||s0:∞) for each

possible sequence of state-action pairs (st, at)
∞
t=0 is convex

(see [2], Definition 5.6 and Theorem 5.8). That convex prob-

lem has an infinite number of variables and constraints, but

its dual is tractable when we enforce the causal-conditioning

constraints by using the factors πt(at|st) as the decision

variables. Furthermore, when strong duality holds, a solution

to the dual is also a solution to the primal, a property



that will enable us to derive a tractable recursive solution

specification. The sharp version of Slater’s condition, which

in this context is met when there is a non-deterministic policy

that meets the FEM constraint, is sufficient for strong duality

[9]. Slater’s condition is not restrictive because by definition

there is a policy (πE) that satisfies the FEM constraint

(assuming ˆ̄fγ
πE

is a sufficiently accurate estimate of f̄γ
πE

) [3].

If needed, we can “loosen” the FEM constraint to ensure that

there is a non-deterministic feasible policy.

A solution to the MDCE IRL problem achieves a worst-

case guarantee when predicting future expert actions.

Theorem 1: A maximum discounted causal entropy pol-

icy minimizes the worst-case discounted log-loss of

predictions of the actions taken by any other policy

π̃, supπ̃ EP0,P,π̃ [
∑∞

t=0
−βt log π(At|St)] , given that π̃

achieves the FEM constraint (2).

Proof: This follows from Theorem 5.10 of [2].

IV. SOFT BELLMAN POLICIES

By investigating the dual problem mentioned in Sec-

tion III, we can derive a parameterized and recursively-

defined stochastic policy that solves the MDCE IRL problem.

Theorem 2: If the sharp version of Slater’s condition

holds, then a soft Bellman policy solves the MDCE IRL prob-

lem in eqs. (1)–(4). A soft Bellman policy has parameters

θ ∈ RK and is defined recursively as:

πsoft
t,θ (at|st) = exp

(

Qsoft
t,θ (st, at)− V soft

t,θ (st)
)

, (5)

where

Qsoft
t,θ (s, a) =

(

γ

β

)t

θ⊤f(s, a) + β
∑

s′∈S

P (s′|s, a)V soft
t+1,θ(s

′)

(6)

and

V soft
t,θ (s) = softmax

a∈A
Qsoft

t,θ (s, a) , log

(

∑

a∈A

exp(Qsoft
t,θ (s, a))

)

.

(7)

Proof: As discussed in Section III, there is a

mathematically equivalent and convex specification of the

MDCE IRL problem in which decision variables specify

Prob(a0:∞||s0:∞) for each possible sequence of state-

action pairs (st, at)
∞
t=0. Since we assume the sharp version

of Slater’s condition, strong duality holds. Therefore, if we

write the Lagrangian of this specification of the problem

with the factors πt(at|st) as variables, differentiate it, and

set it equal to zero, we arrive at a general θ-parameterized

form for πt(at|st): πt,θ(at|st) =
Zat|st,θ

Zst,θ
, where Zat|st,θ =

exp

{

(

γ
β

)t

θ⊤f(s, a) + β
∑

s′∈S P (s′|s, a) logZst+1,θ

}

and Zst,θ =
∑

at∈A Zat|st,θ. By defining Qsoft
t,θ (s, a) ,

logZat|st,θ and V soft
t,θ (s) , logZst,θ, we see that soft

Bellman policies are of this general form.

This proof is very similar to that of Theorem 1 in [3]. The θ
parameters arise as dual variables corresponding to the FEM

constraint (2). We use θ̂ to denote the values that specify a

soft Bellman policy that solves the MDCE IRL problem.

In general, soft Bellman policies are non-stationary. Deriv-

ing non-stationary policies is generally intractable for infinite

time horizon problems, so we will assume that β = γ when

specifying algorithms in Section V. This assumption dictates

that future contributions to causal entropy, of concern to the

analyst, and future reward feature values, of concern to the

expert, be discounted identically. We do not suspect that there

is motivation for this assumption in many contexts, and so

requiring this assumption is a weakness of this work. When

β = γ, we will denote the resulting stationary soft Bellman

policies, soft state-action values, and soft state values as πsoft
θ ,

Qsoft
θ , and V soft

θ , respectively. We conjecture that maximizing

per-time step average contributions to causal entropy while

matching per-time step average feature vectors would lead

to stationary soft Bellman policies that could be derived

using adaptations of average cost dynamic programming

techniques.

Finally, we know that for the reward R(s, a) = θ̂⊤f(s, a),
the soft Bellman policy corresponding to θ̂ achieves the

largest objective value that can be achieved by any soft

Bellman policy (see [2], Theorem 6.11).

V. ALGORITHMS

When strong duality holds for the MDCE IRL problem,

we can solve the dual mentioned in the proof of Theorem 2

to find a θ̂ that specifies a policy πsoft

θ̂
that solves the MDCE

IRL problem. In fact, this corresponds to finding maximum

discounted causal likelihood estimates of the θ parameters

when given D and assuming the soft Bellman policy form

(see [2], Theorem 6.4). Furthermore, the dual problem is

convex, so we can use gradient ascent techniques to solve it.

The gradient is ˆ̄fγ

πE − f̄γ

πsoft
θ

(see [3], Theorem 2).

Therefore, a class of algorithms for the MDCE IRL

problem is specified by:

Require: MDP\R, f , D {MDCE IRL problem instance}
Require: θ0 ∈ RK {initial guess for θ̂}
Require: α : Z+ → R+ {α(n) is the gradient step size}
Require: N {maximum number of iterations}
Require: ǫ ∈ R+ {stopping criterion}

1: Compute ˆ̄fγ

πE

2: for n = 0 to N do

3: Derive πsoft
θn

4: Compute f̄γ

πsoft
θn

5: if δFEM
(

f̄γ

πsoft
θn

, ˆ̄fγ

πE

)

≤ ǫ then

6: return θn and πsoft
θn

7: end if

8: θn+1 = θn + α(n)
(

ˆ̄fγ

πE − f̄γ

πsoft
θn

)

9: end for

10: return θN and πsoft
θN

Here steps 5 and 6 allow the algorithm to terminate when

the FEM constraint (2) is approximately met, since we define

δFEM : RK × RK → R+ as: δFEM(f, f ′) , maxk
|fk−f ′

k|
|f ′

k|
.

This class of algorithms is an infinite time horizon gener-

alization of algorithms specified by Ziebart in Chapter 9 of

[2]. In the remainder of this Section, we will describe three



ways to derive πsoft
θ for a given θ (step 3) and three ways to

then evaluate a policy by computing f̄γ

πsoft
θ

(step 4).

A. Soft Bellman Policy Derivation

We propose three approaches for step 3 by extending

techniques from dynamic programming and reinforcement

learning.

1) Soft Value Iteration: When P is known and |S| and

|A| are not too large to prohibit repeated sums over states

and actions, soft value iteration can be used to derive the soft

Bellman policy. The soft Bellman operator corresponding to

θ is defined as

T soft
θ (V )(s) , softmax

a∈A

(

θ⊤f(s, a) + γ
∑

s′∈S

P (s′|s, a)V (s′)

)

.

Soft value iteration involves repeatedly applying T soft
θ to

an initial soft value vector V0 ∈ R|S|. We will show that

T soft
θ is a contraction mapping so that, for any V0, when we

repeatedly apply T soft
θ , we will converge to the unique fixed

point V ⋆ ∈ R|S| satisfying V ⋆ = T soft
θ V ⋆. This V ⋆ is exactly

the V soft
θ we need to specify πsoft

θ using eqs. (5)–(7).

Fact 1: The softmax function is monotone: for y, y′ ∈
RN , if yn ≤ y′n for all n = 1, . . . , N , then softmax(y) ≤
softmax(y′).

Fact 2: For y ∈ RN and M ∈ R, softmax(y +M1
⊤) =

softmax(y) +M (where 1
⊤ is an N × 1 vector of ones).

Lemma 1: T soft
θ is monotone: for V, V ′ ∈ R|S|, if V ≤ V ′,

then T soft
θ (V ) ≤ T soft

θ (V ′).
Proof: This follows directly from the monotonicity of

the softmax function.

Theorem 3: T soft
θ is a contraction mapping with contrac-

tion factor γ.

Proof: Consider V, V ′ ∈ R|S|. There exists

0 ≤ M ≤ ∞ such that ‖V − V ′‖∞ = M .

Therefore, −M ≤ V (s) − V ′(s) ≤ M for all

s ∈ S. Since T soft
θ is monotone, T soft

θ (V )(s) ≤
softmaxa∈A

(

θ⊤f(s, a) + γ
∑

s′∈S P (s′|s, a) [V ′(s) +M ]
)

holds for all s ∈ S and a symmetric inequality can

bound T soft
θ (V ′) above for all s ∈ S. By Fact 2 and since

∑

s′∈S P (s′|s, a)M = M , we also know that T soft
θ (V )(s) ≤

T soft
θ (V ′)(s) + γM and T soft

θ (V ′)(s) ≤ T soft
θ (V )(s) + γM

for all s ∈ S. Together, these two inequalities imply that

‖T soft
θ (V )− T soft

θ (V ′)‖∞ ≤ γ‖V − V ′‖∞.
2) Soft Values via Convex Optimization: We can find V soft

θ

by solving a convex optimization problem:

minimize
V

c⊤V (8)

subject to V ≥ T soft
θ V, (9)

for any c ∈ R
|S|
++.

Theorem 4: V soft
θ is the unique solution to the convex

optimization problem in eqs. (8)–(9).

Proof: Since T soft
θ is monotone and also a contraction

mapping that converges to V soft
θ , we know that for any feasi-

ble V (satisfying constraint (9)), V ≥ T soft
θ V ≥ (T soft

θ )2V ≥
(T soft

θ )3V ≥ · · · ≥ V soft
θ . This implies that V ≥ V soft

θ for all

feasible V , which in turn implies that c⊤V ≥ c⊤V soft
θ . Since

V soft
θ is also a feasible solution and the unique fixed point

V soft
θ = T soft

θ V soft
θ , it is the unique optimal solution.

As was the case for soft value iteration, this approach

requires knowledge of P . This problem has |S| variables and

|S| constraints, so it may require long computation times.

Computation times could be reduced by solving for linear

approximations of the soft value function while utilizing

constraint sampling.

3) Soft Q-Learning: When P is not known, we can learn

Qsoft
θ while simulating the system by extending the well-

known Q-learning reinforcement algorithm to this context

(see [5], sub-section 6.4). The update equation for Qsoft is

Qsoft(st, at)← Qsoft(st, at) + η(t)

[

θ⊤f(st, at)

+γ softmax
at+1∈A

Qsoft(st+1, at+1)−Qsoft(st, at)

]

,

where η : Z+ → R+ is a step size parameter function.

Theorem 5: If each Qsoft(s, a) is updated infinitely often,
∑∞

t=0
η(t) =∞, and

∑∞
t=0

η(t)2 <∞, then soft Q-learning

converges to Qsoft
θ w.p. 1.

Proof: This result can be proven using the same ap-

proach used by Melo to prove the convergence of Q-learning

in [10]. This proof depends on the fact that the soft Bellman

operator for soft state-action values is a contraction mapping,

which can be shown using the same approach as was used

in the proof of Theorem 3.

B. Policy Evaluation

When evaluating a soft Bellman policy πsoft
θ in step 4,

we are interested in computing its feature expectation vector

f̄γ

πsoft
θ

. Two of the approaches described here are based on the

observation that we can compute the kth component of f̄γ

πsoft
θ

by evaluating πsoft
θ in an MDP with reward function fk(s, a).

The third approach uses Monte Carlo simulations.

1) Dynamic Programming Operator: As proposed by

Ziebart et al. for the finite time horizon context, we can

repeatedly apply the regular (non-soft) dynamic program-

ming operator (T ) defined for reward function fk(s, a) and

policy πsoft
θ to compute the expected infinite discounted sum

of reward feature k assuming we start in any given state

[3]. The inner product of this vector and P0 yields the kth

component of f̄γ

πsoft
θ

. This approach requires knowledge of P .

2) Matrix Computations: We can also compute the ex-

pected infinite discounted sum of reward feature k, assuming

we start in any given state and follow πsoft
θ , by solving a set

of linear equations. Again, the inner product of the resulting

vector and P0 yields the kth component of f̄γ

πsoft
θ

. Although

accurate, this approach requires knowledge of P and can

require long computation times when |S| is large.

3) Monte Carlo Simulations: Finally, we can use Monte

Carlo simulations to estimate f̄γ

πsoft
θ

. This involves repeatedly

initializing the MDP\R and then selecting actions as pre-

scribed by πsoft
θ . Finally, the resulting data set of state-action

pairs can be used to estimate f̄γ

πsoft
θ

. This approach does not

require knowledge of P .



TABLE I

ALGORITHM PARAMETERS

Parameter Value

α(n) 1000/(1000 +
√

n+ 2)
N 1000
ǫ 0.025
θ0 [−1.0,−1.0,−1.0,−1.0,−1.0]⊤

VI. COMPUTATIONAL EXPERIMENT

A. Algorithms

We selected three algorithms such that each policy deriva-

tion approach and each evaluation approach is used at least

once, with the exception of the matrix computation approach,

which is instead used in post-processing to illustrate proper-

ties of the other two policy evaluation approaches. The first

algorithm (SoftVI-T) uses soft value iteration to derive

soft Bellman policies and then the dynamic programming

operator to evaluate them. The second (ConvOpt-T) uses

convex optimization to derive soft Bellman policies and then

the dynamic programming operator to evaluate them. The

third (SoftQL-Sim) uses soft Q-learning to derive soft

Bellman policies and then Monte Carlo simulations to eval-

uate them. Unlike the other two algorithms, SoftQL-Sim

requires the ability to simulate the system but not the

specification of P0 and P . All of these algorithms were

implemented by extending the PyMDPToolbox Python pack-

age1 [11]. The solutions to convex optimization problems

required by ConvOpt-T were found using the CVXPY

and CVXOPT Python packages [12], [13]. Finally, relevant

algorithm parameter values are specified in Table I.

B. Problem Instance

We evaluate these algorithms on a problem instance based

on an MDP for a simple controlled queuing network. The

MDP system model is inspired by controlled queuing net-

work models of air traffic management problems [14]–[16],

but it would need additional size and complexity to mean-

ingfully represent a real-world problem. For such models

we could approximate soft Bellman policies by extending

techniques from approximate dynamic programming.

The network, depicted in Fig. 1, consists of a sequence

of two servers and corresponding buffers, and the control

input determines whether a flight completing service in the

first server transitions to the second buffer or is instead

recirculated back into the first buffer. Recirculation repre-

sents actions taken to delay aircraft. Both buffers have finite

capacities, and an arrival to a full buffer exits the network,

an event that could model a flight being canceled, diverted,

or rerouted.

The system state at time step t is s(t) =
[s(t)0, s(t)1, s(t)2, s(t)3]

⊤ and it describes the number

of flights in each buffer at the start of the time step (s(t)0
and s(t)1), as well as the number of flights attempting to

enter each buffer during the previous time step that had to

1NASA plans to release implementations of these algorithms in a patch
for the PyMDPToolbox package. Contact the authors for details.

s(t)0 s(t)1
λ0

µ0(s(t)0) µ1(s(t)1)a(t) = 0
a(t) = 1

s̄0 s̄1
λ1

Fig. 1. Controlled queuing network

exit the system (s(t)2 and s(t)3 for flights encountering

a full buffer 0 and buffer 1, respectively). The buffer

capacities are s̄0 and s̄1. The distribution P0 is uniform.

In each time step, a flight arrives at and joins the first

buffer with probability λ0 and at the second with probability

λ1. Similarly, a flight completes service in the first server

with probability µ0(s(t)0) and the second with probabil-

ity µ1(s(t)1). These probabilities are monotonically non-

decreasing functions of the number of flights in the corre-

sponding buffer. For many air traffic management problems,

flights modeled as in each buffer are in fact traversing a

region of airspace, and service completion represents that a

flight is ready to move to the next region of airspace. When

more flights are in a region, there is a greater probability

that one of them will be ready in a time step. The state-

dependent service completion probabilities are meant to

capture this phenomenon [14]. In this problem instance,

µ0(s(t)0) increases linearly from µ
0

when s(t)0 = 1 to µ̄0

when s(t)0 = s̄0 and similarly µ0(s(t)0) increases linearly

from µ
1

when s(t)1 = 1 to µ̄1 when s(t)1 = s̄1. All

of these probabilities are independent from each other and

across time steps. The action a(t) = 0 indicates that a flight

completing service at the first server will be routed onward,

while a(t) = 1 indicates that it will be recirculated.

We define an MDP based on this system by specifying a

discount factor γ and reward function R(s, a) = θ⊤f(s, a)
for f(s, a) = [sσ0

0 , sσ1

1 , s2, s3, a]
⊤/fmax, where fmax is a

5 × 1 vector containing the maximum attainable value for

each element in the vector in the numerator. We generate an

MDCE IRL instance by deriving an expert policy and then

simulating it to provide a demonstration data set. The expert

policy is a Boltzmann policy for the MDP: πBoltzmann
τ (a|s) ∝

Q⋆(s, a)/τ, where τ is the temperature parameter and Q⋆ is

the state-action value function that is optimal with respect to

R(s, a) = θ⊤f(s, a). We use the expert policy to generate a

test data set of the same size as the training data set.

Table II shows the parameters we used for the instance.

The Python code was run on a MacPro workstation with two

6-core Intel Xeon 2.66 GHz processors and 24 GB of RAM.

C. Results

Table III shows the results of the three algorithms for the

MDCE IRL problem instance. The δFEM “estimate” column

is based on f̄γ

πsoft
θ

computed by each algorithm (using the

dynamic programming operator or simulation), while the

δFEM “actual” column is based on f̄γ

πsoft
θ

computed by the



TABLE II

MDCE IRL PROBLEM INSTANCE PARAMETERS

Parameter Value Parameter Value

s̄0 10 s̄1 2
λ0 0.8 λ1 0.4
µ
0

0.2 µ̄0 0.99

µ
1

0.3 µ̄1 0.8

γ 0.8 θ [−1.0,−1.0,−2.0,−8.0,−0.2]⊤

σ0 1.0 σ1 1.5
D 2000 tf 50
τ 0.25

TABLE III

ALGORITHM PERFORMANCE

Discounted Average

δFEM Log-Loss Log-Loss Time
Algorithm Estimate Actual Train Test Train Test [sec]

SoftVI-T 0.0250 0.0250 3.23 3.22 0.570 0.569 82.7
ConvOpt-T 0.0250 0.0250 3.23 3.22 0.570 0.569 18000.
SoftQL-Sim 0.0178 0.0426 3.48 3.46 0.633 0.633 486.

accurate matrix computation approach. While SoftVI-T

and ConvOpt-T estimate f̄γ

πsoft
θ

accurately, SoftQL-Sim

terminates prematurely because it fails to do so. The dis-

counted and average log-loss values achieved by SoftVI-T

and ConvOpt-T are identical and lower than those achieved

by SoftQL-Sim. Furthermore, the discounted and average

log-loss values are nearly equal on the training and testing

data sets, indicating that over-fitting is not an issue. Finally,

SoftVI-T requires the shortest time to execute, followed by

SoftQL-Sim and then ConvOpt-T. In fact, ConvOpt-T

requires more than 200 times longer than SoftVI-T.

VII. CONCLUSIONS

The maximum discounted causal entropy inverse rein-

forcement learning problem extends maximum causal en-

tropy inverse reinforcement learning to the infinite time

horizon discounted reward context. Many of the desirable

theoretical properties of finite time horizon maximum causal

entropy inverse reinforcement learning still hold after this ex-

tension. Soft Bellman policies specify a parameterized form

for stochastic policies that solve the maximum discounted

causal entropy inverse reinforcement learning problem. As-

suming that the same discount factor is used to discount

contributions to future causal entropy and future reward

feature values, and also assuming some mild conditions that

ensure strong duality, a class of algorithms based on gradient

ascent will find optimal values of the soft Bellman policy

parameters. One step in this class of algorithms requires

that a soft Bellman policy be derived for an estimate of

the policy parameters. Extensions of three algorithms from

dynamic programming and reinforcement learning will find

this unique soft Bellman policy. Another step in this class of

algorithms requires that a reward feature expectation vector

be computed for a soft Bellman policy. This step can be

performed by applying policy evaluation techniques or via

Monte Carlo simulations.

We perform a computational experiment to illustrate prop-

erties of three algorithms in this class of algorithms. We

define a problem instance based on a simple controlled

queuing network model that is similar to models used in

air traffic management research and then deploy the three

algorithms on the instance. Two of these algorithms generate

policies that achieve identical discounted and average log-

losses when predicting expert actions. However, the algo-

rithm that derives policies with an extension of value iteration

executes more than 200 times faster than the algorithm that

derives policies by solving a convex optimization problem.

The third algorithm derives soft Bellman policies with an

extension of Q-learning and evaluates them using Monte

Carlo simulations, so it requires the ability to simulate

the system but not a full specification of state transition

probabilities. It terminates prematurely due to an inaccurate

feature expectation vector estimate, and the resulting policy

achieves higher discounted and average log-losses.
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